
Large-Scale
Software Architecture





Large-Scale
Software Architecture

A Practical Guide using UML

Jeff Garland
CrystalClear Software Inc.

Richard Anthony
Object Computing Inc.



Copyright# 2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the
terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright
Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the
Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a
computer system, for exclusive use by the purchaser of the publication. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770571.

Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned
to any person or property through using the material, instructions, methods or ideas contained herein, or acting or
freraining from acting as a result of such use. The authors and publisher expressly disclaim all implied warranties,
including merchantability or fitness for any particular purpose. There will be no duty on the authors or publisher to
correct any errors or defects in the software.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
John Wiley & Sons, Ltd is aware of a claim, the product names appear in capital or all capital letters. Readers,
however, should contact the appropriate companies for more complete information regarding trademarks and
registration.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Library of Congress Cataloging-in-Publication Data

(to follow)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 470 84849 9
Typeset in 1012/13pt Sabon by Keytec Typesetting, Bridport, Dorset
Printed and bound in Great Britain by Biddles Ltd, Guildford and Kings Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.



Contents

Preface xi

Acknowledgments xvii

1 Introduction 1
1.1 What is Software Architecture 1

1.1.1 What software architecture is not 4
1.1.2 Attributes of software architecture 5
1.1.3 Definitions of other key architecture-related terms 7
1.1.4 Other types of architectures 8

1.2 Why Architect? 10
1.3 Architectural Viewpoint Summary 12
1.4 Other Software Architecture Approaches 16

1.4.1 The 4+1 Views 16
1.4.2 RM-ODP viewpoints 17
1.4.3 Bass architectural structures 19
1.4.4 Hofmeister software architecture views 20

1.5 Recommended Reading 20

2 Roles of the Software Architect 21
2.1 Relationship to other key roles in development organization 25

Role: project management 25
Role: development team managers 25
Role: system architect/chief engineer 26
Role: chief software engineer 26
Role: hardware architect 27
Role: network architect 27



Role: technical leads of each release 28
Role: data architect 28
Role: systems engineering leads 28
Role: software systems engineering lead 29

2.2 Skills and Background for the Architect 29
2.3 Injecting Architecture Experience 31
2.4 Structuring the Architecture Team 32
2.5 Traps and Pitfalls Associated with the Role of Software Architect 33

2.5.1 Clear definition of leadership 34
2.5.2 Reporting structure for the software architect 34
2.5.3 Geographical location of software architect and technical leads 35
2.5.4 Architecture team size and composition 36
2.5.5 Software architect lifecycle participation 36

2.6 Recommended Reading 37

3 Software Architecture and the Development
Process 39
3.1 Overview of Iterative Development 39

3.1.1 Overall process phases 40
3.1.2 Lifecycle stages 41
3.1.3 Architecture and agile processes 43
3.1.4 Start early, refine constantly 47

3.2 Requirements Management 48
3.2.1 Use cases and requirements engineering 48
3.2.2 Additional requirements that impact architecture 49
3.2.3 Requirements tracing 49

3.3 Management of the Technology Roadmap 50
3.3.1 External software products 50
3.3.2 Software technology management traps and pitfalls 53
3.3.3 Organizational technology roadmap 54

3.4 Effective Technical Meetings 55
3.4.1 Informal technical meetings 55
3.4.2 Peer reviews and inspections 56
3.4.3 Design reviews 57
3.4.4 Design communication meetings 57
3.4.5 Management meetings 57
3.4.6 Vendor presentations 58
3.4.7 Distributed technical meetings 58

3.5 Traps and Pitfalls of the Software Architecture Process Activities 59
The out-of-touch architect 59
Analysis paralysis 60
Design for reuse 60
Use cases 60
Schedule 60

3.6 Computer-Aided Software Engineering (CASE) Tools 61
3.7 Recommended Reading 62

vi Contents



4 Example System Overview 63
4.1 System Overview 64
4.2 Overview of System Interfaces 64
4.3 Constraints 67
4.4 Major Operational Requirements and Software Requirements 67

5 UML Quick Tour 69
5.1 UML Diagram Summary 69
5.2 General Diagramming Conventions 72

5.2.1 General UML features: stereotypes, tagged values, multi-instance 73
5.2.2 View labels 74

5.3 The Diagrams 75
5.3.1 Component instance diagrams 75
5.3.2 Class and subsystem diagrams 76
5.3.3 Interaction (sequence and collaboration) diagrams 77
5.3.4 Deployment diagrams 79
5.3.5 Statechart diagrams 80
5.3.6 Activity diagrams 81

5.4 Managing Complexity 81
5.4.1 Use Case focused modeling 82
5.4.2 Element focused modeling 82
5.4.3 Level of detail 83
5.4.4 Controlling the number of models 83
5.4.5 Use Supplemental Textural Information 85

5.5 Recommended Reading 85

6 System Context and Domain Analysis 87
6.1 Conceptual Diagrams 87
6.2 Context Viewpoint 89
6.3 Domain Analysis Techniques 94

6.3.1 A formal analysis technique 95
6.3.2 Other techniques for finding domain entities 98
6.3.3 Analysis shortcuts 100

6.4 Analysis Viewpoints 101
6.4.1 Analysis Interaction Viewpoint 101
6.4.2 Analysis Focused Viewpoint 103
6.4.3 Analysis Overall Viewpoint 105
6.4.4 Candidate subsystem identification 107

6.5 Recommended Reading 108

7 Component Design and Modeling 111
7.1 Overview 111

7.1.1 Component-based development 111
7.1.2 Terminology 112
7.1.3 Communication and interfaces 115
7.1.4 Finding components 115
7.1.5 Qualities of component design 116

Contents vii



7.2 Component Viewpoint 116
7.2.1 Component communication 117
7.2.2 Component interfaces 118
7.2.3 Message-based component modeling 121
7.2.4 Combining interfaces and messaging 124
7.2.5 Comparison of interfaces and messaging 127
7.2.6 Mechanism and performance annotations 128

7.3 Component Interaction Viewpoint 131
7.3.1 Component to Component Interactions 131

7.4 Component State Modeling 133
7.5 Modeling Highly Configurable Component Architectures 137
7.6 Recommended Reading 137

8 Subsystem Design 139
8.1 Terminology 139
8.2 Modeling Subsystems, Interfaces, and Layers 141

8.2.1 Subsystem Interface Dependency Viewpoint 141
8.2.2 Enhancing the Subsystem Dependency Views with layers 143
8.2.3 Top-level Dependencies 144
8.2.4 The Layered Subsystem Viewpoint 146

8.3 Mapping Subsystems and Layers to Implementation 151
8.3.1 Subsystems, layers, and build trees 151
8.3.2 Subsystems and components 153

8.4 Recommended Reading 154

9 Transaction and Data Design 155
9.1 Logical Data Architecture 155

9.1.1 Logical data model stability 157
9.1.2 Effects of the stable logical data model 158

9.2 Logical Data Viewpoint 159
9.2.1 Logical Data View example 160
9.2.2 Logical Data View for messaging 164

9.3 Data Model Design – Other Considerations 164
9.3.1 Data models and layers 164
9.3.2 Data models and reflection 165
9.3.3 Mapping objects to relational database 166

9.4 Transaction Design 169
9.4.1 Transaction concepts 170
9.4.2 Modeling transaction dynamics 171
9.4.3 Transactions and interface design 173

9.5 Recommended Reading 174

10 Process and Deployment Design 177
10.1 Physical Data Viewpoint 178

10.1.1 Modeling other storage attributes 179
10.1.2 Detailed physical storage modeling 181

10.2 Process Viewpoint 183

viii Contents



10.2.1 Processes and components 186
10.2.2 Process and component management 186
10.2.3 Process State Viewpoint 189

10.3 Deployment Viewpoint 193
10.3.1 Scalable node design 194
10.3.2 Backup/archive design 199

10.4 Recommended Reading 199

11 Architecture Techniques 201
11.1 Architecture Development Techniques 201

11.1.1 Commonality and variability analysis 202
11.1.2 Design for change 203
11.1.3 Generative programming techniques 204
11.1.4 Building a skeleton system 205
11.1.5 Prototyping 206
11.1.6 Interface development – Design by Contract 206
11.1.7 Architectural description languages 208
11.1.8 Architecture evaluation 208

11.2 Software Partitioning Strategies – Separation of Concerns 208
11.2.1 Functional decomposition 209
11.2.2 Isolate donfiguration data 210
11.2.3 Isolate hardware-specific components 210
11.2.4 Isolate time-critical components 211
11.2.5 Separate domain implementation model from human interface 211
11.2.6 Separate domain implementation model from implementation

technology 211
11.2.7 Separate main function from monitoring 212
11.2.8 Separate fault recovery processing 212
11.2.9 Adaptation of external interfaces 213

11.3 Software Changeability and Dependency Management 213
11.3.1 The stable dependencies principle (SDP) 214
11.3.2 Acyclic dependencies principle 215
11.3.3 Interface Separation Principle 216

11.4 Using Architectural Patterns 216
11.5 Integration Strategies 218

11.5.1 Data-only integration 219
11.5.2 Executable integration 220

11.6 Establishing Architecture to Support Development 221
11.6.1 Configuration and change management 221
11.6.2 Build management 222
11.6.3 Continuous integration 222
11.6.4 Anticipate multi-language development 223
11.6.5 Anticipate tactical development (scripting) 224

11.7 Recommended Reading 225

12 Applying the Viewpoints 227
12.1 Bottom-Up Architecture Development 227
12.2 Top-Down Architecture Development 229

Contents ix



12.3 Message Protocol and Interface Development 231
12.4 Reengineering Existing Systems 233
12.5 Documenting the Architecture 233
12.6 Conclusions 235

12.6.1 Becoming an architect 235
12.6.2 State of the Practice 237
12.6.3 Looking forward 238
12.6.4 Final thoughts 240

12.7 Recommended Reading 241

Appendix: Summary of Architectural Viewpoints 243

Bibliography 251

Index 257

x Contents



Preface

The purpose of this book is to describe practical representations and techni-
ques for the development of large-scale software architectures. The goal is to
enable other software architects, developers, and managers to become more
effective as a direct result of our experiences on several large-scale software
development projects. We describe the techniques and architectural represen-
tations we have utilized successfully.
This book is intended to be a practical guide. Our goal is to be brief. We

cover only the essential information to guide software architects in defining
the software architecture, providing pointers to further reading in lieu of
detailed descriptions of this literature. Ideally, we can help software develop-
ment teams avoid the common practice of capturing the architecture after the
software has been developed instead of utilizing the architecture as a tool to
guide the software development.
The Unified Modeling Language (UML) is used throughout this book. We

reduce the myriad of UML constructs to a precious few that we have found to
be most useful. Leveraging the recent IEEE 1471 standard for software
intensive systems, we describe several architectural viewpoints that are helpful
in the development and documentation of software architectures. After read-
ing this book, you will understand these viewpoints and techniques that will
improve the modeling of your system’s software architecture.
The focus of this book will be the software architecture of large-scale

systems. Typically, this means enterprise systems and large distributed sys-
tems. However, most of the viewpoints and techniques discussed here will



apply to smaller projects and embedded systems. A typical large-scale soft-
ware project will include:

• Large quantities of source code (typically millions of lines)

• Large numbers of developers (potentially hundreds, often geographically
distributed)

• High complexity of interaction between components

• Extensive use of off-the-shelf components

• Multiple programming languages

• Multiple persistence mechanisms (files, relational databases, object data-
bases)

• Multiple hardware platforms

• Distribution of components over several hardware platforms

• High concurrency

Dealing with the complexity of large-scale systems can be a challenge for
even the most experienced software designers and developers. Large software
systems contain millions of elements, which interact to achieve the system
functionality. The interaction of these elements is far from obvious, especially
given the artifacts created for a typical software project. These artifacts are
especially critical as new team members are added and at different phases of
the project. These phases include development, integration, testing and main-
tenance of the system. Even more challenging, however, these elements must
been understood and modified as the required functionality of the system
evolves. To do this correctly requires an understanding of how the elements
interact as well as the underlying principles of the design.
Unfortunately, humans are ill equipped to manage complexity. Human

short-term memory can typically hold between five and nine items simulta-
neously. Communication among team members is critical to cooperation and
yet often uses imprecise language that frequently creates miscommunication.
Providing a shared language of discussion can greatly enhance communica-
tion. Recently software has begun to develop some of the complexity manage-
ment methods similar to those utilized in other engineering domains. These
include the UML, object-modeling techniques, Design Patterns, and use of
pre-fabricated software components and frameworks.
Architecture-based development is often recommended as a technique for

xii Preface



dealing with the complexity of large-scale projects. However, there is still
little agreement about how to develop and describe software architecture
effectively. The agreement usually ends with the use of UML for design,
although this is not universal either. The UML provides a huge set of
constructs for describing the software architecture, and includes many
extensibility features. However, this flexibility creates a large number of
possibilities for software architecture representation. In addition, most of the
books and articles on software architecture and UML do not address large-
scale development. The literature typically doesn’t provide guidelines on how
to get started in the definition of the software architecture, and doesn’t
provide specific representations which convey appropriate information to the
stakeholders in a software architecture. This book is an attempt to meet
these needs, which are critical to the software architect and the software
development team.
Some areas where this book will provide practical guidance include:

• Modeling of architectural constructs, including components, subsystems,
dependencies, transactions, and interfaces

• Modeling of environmental elements, including processes, nodes, and
physical databases

• Insight into useful techniques for development of software architectures

• Various software architecture development processes

• Roles and responsibilities of the software architect and the architecture
team

• Traps and pitfalls of architecture development

• Utilization of reusable and off-the-shelf software frameworks and compo-
nents

• Addressing non-functional requirements such as performance and main-
tainability

This book does not purport to describe the best or only way to represent
software architecture. Some systems may require additional representations
from the ones shown in this book, and others may require only a subset of
those shown here. However, most software development projects could benefit
from at least some of the techniques and architecture representations de-
scribed here.

Preface xiii



In this book, we stick closely to the UML without major extensions. In
some cases, this results in some limitations in formality or model semantics.
Regardless of these limitations, these viewpoints have helped us solve complex
problems in large systems. Note that over the course of several projects, the
views described within were upgraded to utilize the UML. In many cases, we
were using ad-hoc notations before the UML had reached its current state. In
addition, future changes to the UML and the associated profiles may allow for
improvements of the architecture views described in the book. Any that we
are aware of are highlighted. Finally, although the focus is on modeling
architecture with the UML, we discuss other representations where appro-
priate.
While a major portion of the book focuses on the application of the UML

to software architecture, we also discuss the role of the software architect and
how architecture development fits within the software development process.
We have applied the architectural viewpoints described within on several
projects across different organizations and within different development
processes. Large projects tend to utilize relatively formal processes for which
the described viewpoints fit nicely. However, we have also used these view-
points and techniques on projects using highly iterative and agile processes.
We believe that architecture-based development does not need to imply heavy-
weight processes.
The intended audience for this book includes those practitioners who are

currently in the role of software architect, those who are currently software
developers or designers and who will soon be in this role, and developers
working on large-scale software development who want to better understand
successful techniques for software architecture. We have assumed the reader
has a working knowledge of the UML and at least a few years experience as a
software developer or designer. Experience in the role of software architect or
on a software architecture team would allow the reader to gain even more
from reading this book.
This book is organized to provide general information and overview in the

first chapters and discussion of specific architectural viewpoints in the later
chapters. Chapter 1 provides our view of what ‘software architecture’ means.
Chapters 2–3 discuss roles and process related to architecture. Chapter 4
gives an overview of a banking system example we use to illustrate the various
viewpoints in the later chapters. Chapter 5 summarizes the UML diagrams
and the viewpoints described in later chapters. Chapters 6–10 discuss and
describe the various viewpoints of software architecture. Chapter 11 describes
architecture development techniques and principles.
At the end of each chapter is a recommended reading list of key books and

xiv Preface



papers. These references contain additional information on the topics covered
in that chapter. Many of the books, papers, and URLs in the recommended
readings provide detail in areas where we only touch lightly. This list is
intended to contain the information we have found most useful. The books
and papers are summarized in the Bibliography. URLs can be found at the
book’s web site.
Chapter 1 introduces the definition of software architecture and other

terms. In addition, the UML-based architecture viewpoints are introduced
and compared with other contemporary architecture methods.
Chapter 2 describes the role of the software architect. This includes topics

such as the skills and background required to be an effective software
architect, the ways an organization can support the architect, and the organi-
zation and structure of the software architecture team.
Chapter 3 discusses how software architecture relates to the overall soft-

ware development process and describes processes for the development of
software architecture. Topics include the creation of an effective review
process, development of software infrastructure, technology roadmap man-
agement, process traps and pitfalls, and a brief discussion on tools.
Chapter 4 gives an overview of the banking system example that will be

used to illustrate the architectural viewpoints described in the remainder of
the book.
Chapter 5 provides a quick overview of the UML diagrams and concepts

used in later chapters to build architectural viewpoints.
Chapter 6 provides an overview of representations and techniques for

defining system context and performing domain analysis. Included is a discus-
sion of conceptual diagrams, context views, and views used for domain
analysis.
Chapter 7 explains architecture representations to facilitate component

development. This includes the Component View, Component Interaction
View, and Component State Views. Component messaging and interfaces are
also discussed.
Chapter 8 discusses subsystem and layer representations. These views

include the Layered Subsystem View and the Subsystem Interface Dependency
View. These views serve as some of the fundamental diagrams utilized for
software architecture.
Chapter 9 describes transaction and logical data modeling. This includes a

discussion of mapping designs to relational databases.
Chapter 10 discusses representations for the modeling of physical system

constructs, including nodes, databases, and process. These include Physical
Data Views, Process Views, and Deployment Views.

Preface xv



Chapter 11 describes various tips and techniques essential to the develop-
ment of software architectures. This includes architectural patterns, system
partitioning, legacy and COTS utilization, and design techniques.
Chapter 12 puts it all together and has some final remarks. This includes

some thoughts on becoming a software architect.
The Appendix provides summaries of all the architectural viewpoints.
This book provides a useful addition to the growing set of literature on

software architecture in that it is a concise collection of key information, it is
focused on large-scale software architecture, and it provides a set of key
informative architectural viewpoints utilizing UML. We hope you will enjoy
this book and find it to contain much of the key information required by the
software architect. We welcome comments and discussion on this book at our
website, http://www.largescalesoftwarearchitecture.info/.

Jeff Garland

Richard Anthony

xvi Preface



Acknowledgments

We would like to thank the many individuals that helped make this book
possible.
Our reviewers gave up their own valuable time to provide us very useful

input that helped us to improve the overall quality of the book. These
reviewers included Brad Appleton, Thomas Bichler, David DeLano, Robert
Hanmer, Ralph Johnson (and his Software Architecture Class Participants),
Patrick McDaid, Robert Nord, Micki Tugenberg, and Eoin Woods.
Thanks also to Linda Rising for inspiring us and helping us get this project

started. In addition, we would like to thank our editor, Gaynor Redvers-
Mutton. Without her enthusiasm and support, this book would not have been
possible.
Finally, we would like to thank our families for their patience and support.


