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Preface

The purpose of this book is to describe practical representations and techni-
ques for the development of large-scale software architectures. The goal is to
enable other software architects, developers, and managers to become more
effective as a direct result of our experiences on several large-scale software
development projects. We describe the techniques and architectural represen-
tations we have utilized successfully.
This book is intended to be a practical guide. Our goal is to be brief. We

cover only the essential information to guide software architects in defining
the software architecture, providing pointers to further reading in lieu of
detailed descriptions of this literature. Ideally, we can help software develop-
ment teams avoid the common practice of capturing the architecture after the
software has been developed instead of utilizing the architecture as a tool to
guide the software development.
The Unified Modeling Language (UML) is used throughout this book. We

reduce the myriad of UML constructs to a precious few that we have found to
be most useful. Leveraging the recent IEEE 1471 standard for software
intensive systems, we describe several architectural viewpoints that are helpful
in the development and documentation of software architectures. After read-
ing this book, you will understand these viewpoints and techniques that will
improve the modeling of your system’s software architecture.
The focus of this book will be the software architecture of large-scale

systems. Typically, this means enterprise systems and large distributed sys-
tems. However, most of the viewpoints and techniques discussed here will



apply to smaller projects and embedded systems. A typical large-scale soft-
ware project will include:

• Large quantities of source code (typically millions of lines)

• Large numbers of developers (potentially hundreds, often geographically
distributed)

• High complexity of interaction between components

• Extensive use of off-the-shelf components

• Multiple programming languages

• Multiple persistence mechanisms (files, relational databases, object data-
bases)

• Multiple hardware platforms

• Distribution of components over several hardware platforms

• High concurrency

Dealing with the complexity of large-scale systems can be a challenge for
even the most experienced software designers and developers. Large software
systems contain millions of elements, which interact to achieve the system
functionality. The interaction of these elements is far from obvious, especially
given the artifacts created for a typical software project. These artifacts are
especially critical as new team members are added and at different phases of
the project. These phases include development, integration, testing and main-
tenance of the system. Even more challenging, however, these elements must
been understood and modified as the required functionality of the system
evolves. To do this correctly requires an understanding of how the elements
interact as well as the underlying principles of the design.
Unfortunately, humans are ill equipped to manage complexity. Human

short-term memory can typically hold between five and nine items simulta-
neously. Communication among team members is critical to cooperation and
yet often uses imprecise language that frequently creates miscommunication.
Providing a shared language of discussion can greatly enhance communica-
tion. Recently software has begun to develop some of the complexity manage-
ment methods similar to those utilized in other engineering domains. These
include the UML, object-modeling techniques, Design Patterns, and use of
pre-fabricated software components and frameworks.
Architecture-based development is often recommended as a technique for
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dealing with the complexity of large-scale projects. However, there is still
little agreement about how to develop and describe software architecture
effectively. The agreement usually ends with the use of UML for design,
although this is not universal either. The UML provides a huge set of
constructs for describing the software architecture, and includes many
extensibility features. However, this flexibility creates a large number of
possibilities for software architecture representation. In addition, most of the
books and articles on software architecture and UML do not address large-
scale development. The literature typically doesn’t provide guidelines on how
to get started in the definition of the software architecture, and doesn’t
provide specific representations which convey appropriate information to the
stakeholders in a software architecture. This book is an attempt to meet
these needs, which are critical to the software architect and the software
development team.
Some areas where this book will provide practical guidance include:

• Modeling of architectural constructs, including components, subsystems,
dependencies, transactions, and interfaces

• Modeling of environmental elements, including processes, nodes, and
physical databases

• Insight into useful techniques for development of software architectures

• Various software architecture development processes

• Roles and responsibilities of the software architect and the architecture
team

• Traps and pitfalls of architecture development

• Utilization of reusable and off-the-shelf software frameworks and compo-
nents

• Addressing non-functional requirements such as performance and main-
tainability

This book does not purport to describe the best or only way to represent
software architecture. Some systems may require additional representations
from the ones shown in this book, and others may require only a subset of
those shown here. However, most software development projects could benefit
from at least some of the techniques and architecture representations de-
scribed here.
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In this book, we stick closely to the UML without major extensions. In
some cases, this results in some limitations in formality or model semantics.
Regardless of these limitations, these viewpoints have helped us solve complex
problems in large systems. Note that over the course of several projects, the
views described within were upgraded to utilize the UML. In many cases, we
were using ad-hoc notations before the UML had reached its current state. In
addition, future changes to the UML and the associated profiles may allow for
improvements of the architecture views described in the book. Any that we
are aware of are highlighted. Finally, although the focus is on modeling
architecture with the UML, we discuss other representations where appro-
priate.
While a major portion of the book focuses on the application of the UML

to software architecture, we also discuss the role of the software architect and
how architecture development fits within the software development process.
We have applied the architectural viewpoints described within on several
projects across different organizations and within different development
processes. Large projects tend to utilize relatively formal processes for which
the described viewpoints fit nicely. However, we have also used these view-
points and techniques on projects using highly iterative and agile processes.
We believe that architecture-based development does not need to imply heavy-
weight processes.
The intended audience for this book includes those practitioners who are

currently in the role of software architect, those who are currently software
developers or designers and who will soon be in this role, and developers
working on large-scale software development who want to better understand
successful techniques for software architecture. We have assumed the reader
has a working knowledge of the UML and at least a few years experience as a
software developer or designer. Experience in the role of software architect or
on a software architecture team would allow the reader to gain even more
from reading this book.
This book is organized to provide general information and overview in the

first chapters and discussion of specific architectural viewpoints in the later
chapters. Chapter 1 provides our view of what ‘software architecture’ means.
Chapters 2–3 discuss roles and process related to architecture. Chapter 4
gives an overview of a banking system example we use to illustrate the various
viewpoints in the later chapters. Chapter 5 summarizes the UML diagrams
and the viewpoints described in later chapters. Chapters 6–10 discuss and
describe the various viewpoints of software architecture. Chapter 11 describes
architecture development techniques and principles.
At the end of each chapter is a recommended reading list of key books and
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papers. These references contain additional information on the topics covered
in that chapter. Many of the books, papers, and URLs in the recommended
readings provide detail in areas where we only touch lightly. This list is
intended to contain the information we have found most useful. The books
and papers are summarized in the Bibliography. URLs can be found at the
book’s web site.
Chapter 1 introduces the definition of software architecture and other

terms. In addition, the UML-based architecture viewpoints are introduced
and compared with other contemporary architecture methods.
Chapter 2 describes the role of the software architect. This includes topics

such as the skills and background required to be an effective software
architect, the ways an organization can support the architect, and the organi-
zation and structure of the software architecture team.
Chapter 3 discusses how software architecture relates to the overall soft-

ware development process and describes processes for the development of
software architecture. Topics include the creation of an effective review
process, development of software infrastructure, technology roadmap man-
agement, process traps and pitfalls, and a brief discussion on tools.
Chapter 4 gives an overview of the banking system example that will be

used to illustrate the architectural viewpoints described in the remainder of
the book.
Chapter 5 provides a quick overview of the UML diagrams and concepts

used in later chapters to build architectural viewpoints.
Chapter 6 provides an overview of representations and techniques for

defining system context and performing domain analysis. Included is a discus-
sion of conceptual diagrams, context views, and views used for domain
analysis.
Chapter 7 explains architecture representations to facilitate component

development. This includes the Component View, Component Interaction
View, and Component State Views. Component messaging and interfaces are
also discussed.
Chapter 8 discusses subsystem and layer representations. These views

include the Layered Subsystem View and the Subsystem Interface Dependency
View. These views serve as some of the fundamental diagrams utilized for
software architecture.
Chapter 9 describes transaction and logical data modeling. This includes a

discussion of mapping designs to relational databases.
Chapter 10 discusses representations for the modeling of physical system

constructs, including nodes, databases, and process. These include Physical
Data Views, Process Views, and Deployment Views.
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Chapter 11 describes various tips and techniques essential to the develop-
ment of software architectures. This includes architectural patterns, system
partitioning, legacy and COTS utilization, and design techniques.
Chapter 12 puts it all together and has some final remarks. This includes

some thoughts on becoming a software architect.
The Appendix provides summaries of all the architectural viewpoints.
This book provides a useful addition to the growing set of literature on

software architecture in that it is a concise collection of key information, it is
focused on large-scale software architecture, and it provides a set of key
informative architectural viewpoints utilizing UML. We hope you will enjoy
this book and find it to contain much of the key information required by the
software architect. We welcome comments and discussion on this book at our
website, http://www.largescalesoftwarearchitecture.info/.

Jeff Garland

Richard Anthony
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